Зазор в вентилируемых фасадах: расчеты, пояснения и оспаривание мифа о том, что чем больше зазор, тем лучше.

Правила эксплуатации систем

В процессе строительства и эксплуатации здания не допускается крепить непосредственно к облицовочному материалу любые детали и устройства.

Не следует допускать возможность попадания воды с крыши здания на облицовочную плитку, для чего надо содержать желоба на крыше и водостоки в рабочем состоянии.

Уход за облицовкой фасада, заключающийся в ее регулярной очистке и периодическом восстановлении, продлит срок службы облицовки.

Промывка водой является одним из наиболее эффективных способов очистки облицовки.

Для промывки воду подают шлангами под давлением 2-3 атм.

Рекомендуется сочетать промывку с ручной очисткой поверхности щетками или скребками.

Повреждения облицовочных плит заделывают различными мастиками и составами, в том числе, на основе жидкого стекла, канифоли, цементно-известковой смеси и др. в зависимости от вида облицовочных плит.

После очистки и ремонта поверхность облицовочных плит следует обработать средствами, создающими на ней защитную оболочку. Для этого существуют средства на основе пчелиного воска, растворы, вступающие в химическое взаимодействие с природным камнем, пропитывающие растворы с последующей полимеризацией и т.п.

Плиты с дефектами, не подлежащими восстановлению, заменяются в соответствии с инструкцией разработчика системы.

Расчёты

На данный момент разработана новая схема определения толщины зазора для монтирования качественного вентилируемого фасада. Для её вычисления используется основная характеристика теплозащиты ограждающей системы – это сопротивление теплопередачи, R1. Во время этапа проектирования величина является расчётной и вычисляется уравнением №10 из вышеупомянутого СНиП 11-3-79:

  • R1 = (T1 – T2) / q
    Вентилируемый фасад с отделкой на относе имеет более сложный принцип передачи тепла, чем предусмотренный этой формулой. В данном случае есть уже два участка с отличающимися характеристиками теплопередачи, поэтому вычислять их необходимо по отдельности. Отталкиваясь от этого условия приходится установить двухкомпонентность переноса тепла из зазора через стандартное уравнение:
    R1 = (T1 – T2) / q = R(СНиП) + R(зазора) = R2 * r + R(зазора)
    Слагаемое номер один правой части формулы характеризует тепловую передачу сквозь фасад с теплоизоляцией. Второе – сквозь воздушный заслон и облицовочную поверхность. Если облицовка отсутствует, второе слагаемое удаляется и образуется обычная формула, присущая таким системам:
    R1 = R(СНиП) = R1(усп) * r = ((1 / а) + Z + (1 / а) * r
    В трёх формулах, приведённых выше использованы следующие обозначения
  • T1, T2 – температура воздуха на входе в систему и соответственно на выходе из неё, С
  • q – плотность проникания тепла через систему, Вт/кв.м;
  • R(СНиП) – конкретное сопротивление тепловой передаче системы с теплоизоляцией, которое определяется в соответствии с действующим СНиП 11-3-79, м2 * С/Вт;
  •  r – коэффициенты теплотехнического состояния однородности системы;
  • R (зазора) – эффектное термическое сопротивление воздушного пространства, м2 * С/Вт.

Вычисление зазора

Необходимая толщина воздушной заслонки рассчитывается путём использования значений температуры и скорости движения воздуха в вентилируемом фасаде. Между поверхностью облицовки и утеплителя происходит лучевой теплообмен, который напрямую зависит от температуры.
Конвективный теплообмен выполняется между основными элементами системы и воздушными массами. Величина характеризуется в прямой зависимости от скорости движения воздушного потока, его температуры и элементов системы.
В свою очередь, скорость воздушных потоков колеблется в зависимости от температуры окружающей среды. А её вычисление происходит путём определения скорости воздушных масс и коэффициента теплового обмена, происходящего в вентилируемом пространстве.
Перечисленные выше взаимосвязи не позволяют выполнить вычисление и разработать непосредственные формулы. Именно поэтому расчёт температуры воздушных масс в вентилируемом фасаде осуществляется только численно-итерационными способами. Воспользовавшись таким методом можно получить все интересующие значения:

  • Температура воздуха в зазоре;
  • Скорость его передвижения внутри системы;
  • Толщина зазора;
  • Коэффициент теплового обмена конструкции.

Результат

Исходя из всего вышеперечисленного можно сделать вывод: теплоизоляционные свойства вентилируемого фасада зависят не только от качества и количества теплоизоляционного материала. Большое влияние на это значение оказывает и правильно рассчитанный и смонтированный зазор, а также ещё один фактор: теплопроводность и количество утеплителя, облицовочного материала, а также кронштейнов.

полезно в работе

Необходимо помнить, что для достижения оптимальных теплоизоляционных характеристик фасадов такого плана является наименьшее количество используемых кронштейнов. При этом величина свободного пространства должна быть как можно меньше (исходя из требований удаления влаги от утеплителя или другим соображениям).

Преимущества

Существует ряд достоинств керамогранитной плитки для вентфасада, которые выделяют ее на фоне облицовки из других материалов:

  1. Монтировать керамогранитную плитку в системе вентилируемого навесного фасада можно круглый год – не повлияет на качество монтажа, работу системы.
  2. Керамогранит переносит перепады температуры, не деформируется, не разрушается. Эксплуатировать можно даже в условиях со сложным, суровым климатом.
  3. Керамогранит защищает здание от воздействия влаги в любом виде – дождь, снег, туман, мороз. Не боится воздействия УФ, не выгорает, не разрушается.
  4. Имеет длительный срок службы, на протяжении которого не требует ремонта, обновления. Если один, несколько фрагментов обшивки повреждены, не нужно разбирать стену. Достаточно заменить поврежденные элементы новыми. Фасад не пострадает.
  5. Неприхотливость, простой уход за керамогранитной обшивкой снижают стоимость эксплуатации здания. Любые загрязнения с поверхности можно удалить водой, мыльным раствором. Поверхность — антивандальная, устойчива к механическим воздействиям, не образуются царапины, сколы.
  6. Разнообразие текстур, оттенков, большой размерный ряд плитки.
  7. Не горит, не выделяет токсины, часто применяют для облицовки общественных зданий (поликлиники), учебных заведений (школы, садики).

Принцип работы НВФ

Благодаря естественной циркуляции воздуха в промежутке между стеной и обшивкой, происходит высушивание поверхности, грибок, бактерии не успевают развиваться. Благоприятно сказывается на увеличении срока службы наружных ограждающих конструкций, строения.

Воздушная прослойка, окружающая здание, способствует здоровому микроклимату внутри помещений, снижает теплопотери

Свободное пространство позволяет уложить утеплитель, звукоизоляционный, пароизоляционный материал. Улучшатся эксплуатационные, технические свойства строения. Принцип крепления облицовки обеспечивает защиту фасада от влаги, ветра, других воздействий.

Чтобы система НВФ работала корректно, проектирование должно осуществляться проектной организацией. Эта же организации может выполнить монтаж панелей.

Проект разрабатывается по следующей схеме:

  1. Специалисты получают от заказчика техническое задание.
  2. Составляется график работ.
  3. В эскизный проект входит схема, на которой отражены узлы крепления, размещения кронштейнов, направляющих, раскладка панелей.
  4. В проект входят расчеты, указывающие на нагрузку, которая будет оказываться на фундамент строения, схема расположения, привязка узлов относительно осей строения.
  5. В проект входит сметная документация. Формируется стоимость материала, работ, к которым мастера приступают после подписания договора.

Требования к утеплителю

Выбрать тип утеплителя нужно при проектировании системы НВФ. Для частного дома подходит плитный минералловатный утеплитель. Минеральная вата легко крепиться на клей, грибовидными пластиковыми дюбелями. Для надежности можно два способа объединить.

Кэшированная минеральная вата

Толщина утеплителя зависит от климатических условий региона строительства зимой. В среднем, толщина утеплителя не бывает меньше 10 см. В северных регионах теплоизолятор укладывают в два слоя. Плотность наружного слоя должна быть больше, чем внутреннего. Плиты укладывают со смещением, для перекрытия зазоров. В продаже есть минералловатный утеплитель с разной плотностью сторон – наружная, толщиной около 1 см, более плотная, чем оставшаяся часть плиты. Позволяет сократить срок монтажа, уложить утеплитель в один слой. Если плотность минеральной ваты не превышает 80 кг/м³, для защиты применяют пленку, мембрану.

При проектировании нужно продумать ширину вентилируемого зазора, который повышает теплоэффективность строения за счет естественной циркуляции воздуха, образования воздушной прослойки. Параметр рассчитывают специалисты. Толщина вентиляционного зазора составляет 20-50 мм.

Как избежать ошибок при вычислениях

Любой тип мебели начинают рассчитывать с определения его размеров. В случае с кухонным гарнитуром это также справедливо, но предварительно необходимо оценить величину комнаты и отталкиваться от ее формы, углов и других важных деталей. Затем все найденные числа переносят на бумагу и начинают разрабатывать эскиз дизайна.

Обратите внимание, что размеры нижней базы должны быть связаны с длиной столешницы. Величина фронтов угловых шкафчиков зависит от особенностей помещения

Например, в случае с высокими потолками горизонтальные зазоры могут быть больше стандартных.

Нижняя часть

Для определения ширины нижнего ряда мебели из общего значения отнимают зазоры со всех краев. После этого распределяют получившуюся величину между планируемыми модулями гарнитура

Для расчета высоты важно помнить о размерах ниш под бытовую технику. Стандартом является 850 мм. 


Нижние шкафчикиИсточник links-stroy.ru

Верхние шкафчики

При проектировании верхнего модуля необходимо учесть, что вытяжка должна располагаться строго над плитой, а сушилка – над мойкой. Стандартная мебель допускает изменение планировки, шкафы можно менять местами для удобства пользования. 


Верхние шкафчикиИсточник krovli-zabori.ru

Принцип работы

Движение воздушных масс в пространстве вентилируемых систем осуществляется через входные проушины, расположенные в цокольной части здания. Выход происходит через специальные отверстия в парапете и через русты между облицовочными плитами. Причём минимальный размер диаметра вентиляционных проёмов как для отработанного так и для свежего воздуха должен составлять не более 20 мм.

  • При отделке керамогранитом воздушный обмен происходит только через горизонтальные русты;
  • использование композитных материалов позволяет осуществлять вентиляцию через вертикальные.

Важно знать

Движение воздуха в вентилируемых системах должно происходить только с преодолением некоторого сопротивления в виде внутренних отбортовок кассет или плит.

Составляющие вентилируемого фасада

Конструктивно вентилируемый фасад напоминает сэндвич, состоящий из разных прослоек.

Суть в следующем:

  • на основу монтируется обрешетка;
  • укладывается утеплитель;
  •  укладывается ветрозащитный мембранный слой, который также послужит гидроизоляцией;
  •  после монтируется еще одна обрешетка, на которую устанавливается финишная облицовка.

Между утеплителем и внутренней стороной облицовки есть воздушная прослойка, за счет этого утеплитель не напитывается влагой и дольше сохраняет свои теплоизоляционные свойства. Воздух свободно циркулирует, так что конденсат убирается со всех частей конструкции, что предотвращает коррозию и гниение.

Подобная система используется чаще всего для облицовки высотных офисных сооружений. В статье мы рассмотрим, как облицевать фасад многоэтажного здания.

Воздушный зазор и пожарная безопасность

Подъем воздуха в вентилируемом зазоре происходит за счет явления, которое называют эффектом тяги. Аналогичный эффект действует в обыкновенной печной трубе. В случае пожара вентилируемый воздушный зазор создает открытый путь для продвижения скрытого огня сзади облицовки (рисунок 4). Чем шире воздушный зазор, тем большую угрозу, по-видимому, он представляет с точки зрения пожарной безопасности.

Для предотвращения распространения огня через воздушный зазор в нем устанавливают специальные противопожарные барьеры. Чем шире воздушный зазор, тем сложнее и дороже обходится установка в фасаде противопожарных барьеров.

Рисунок 4— Распространение пламени по воздушному зазору вентилируемого навесного фасада

Популярное заблуждение

Распространённое мнение о том, что чем больше расстояние от утеплителя до облицовки, тем лучше – ошибочно. Многие думают, что таким образом на плиты теплоизоляции гарантированно не попадёт влага. Это так, но следует напомнить, конструкция с предельно завышенной величиной пространства воздушной прослойки может начать шуметь при сильных порывах ветра.

Таким образом, вычисления показывают то, что правильной величины относительно расстояния между паропроницаемой защитной мембраной, а также облицовочным слоем достаточно сложная задача. Проектирование таких фасадов требуется выполнять с учётом всех значений и производить все необходимые для этого расчёты теплоизоляционных характеристик конструкции. Только это позволит дать объективную оценку схеме планируемой конструкции, к тому же оно поспособствует усовершенствованию аналогичных систем и позволит удовлетворить все требования касающиеся теплоизоляции здания.

Воздушный зазор навесного вентилируемого фасада является одним из его основных конструкционных параметров. Ниже представлен обзор основных факторов, которые нужно учитывать при назначении номинального воздушного зазора навесного вентилируемого фасада для конкретных условий его эксплуатации.

Воздушный зазор и теплоизоляция

Иногда воздушный зазор считают дополнительным теплоизоляционным слоем, который дает вклад в сопротивление стены теплопередаче (рисунок 5) .

Рисунок 5 — Схема для расчета сопротивления теплопередаче навесного вентилируемого фасада :

a — толщина облицовки,

b — ширина воздушного зазора,

c — толщина теплоизоляции,

m — толщина несущей стены,

n — толщина внутренней отделки

Однако согласно стандарту EN ISO 6946 сопротивление теплопередаче воздушной прослойки (воздушного зазора) внутри стены зависит от того, насколько она является вентилируемой.

Вертикальная воздушная прослойка считается хорошо вентилируемой, если, площадь отверстий составляет более 1500 мм 2 на метр ее длины в горизонтальном направлении. Воздушный зазор вентилируемого фасада относится к хорошо вентилируемым воздушным прослойкам, так площадь его вентиляционных отверстий составляет не менее 50 см 2 = 5000 мм 2 .

Поэтому согласно EN ISO 6946 расчет сопротивления теплопередаче вентилируемого фасада должен проводиться без учета сопротивления воздушной прослойки и наружной облицовки (b и a на рисунке 5). Температура воздуха в зазоре считается равной температуре наружного воздуха, а сопротивление поверхности стенки зазора принимается равным 0,13 м 2 ·К/Вт как для внутренней поверхности, а не 0,04 м 2 ·К/Вт, как это применяется для наружных поверхностей .

Таким образом, вклад вентилируемого воздушного зазора в сопротивление стены теплопередаче составляет всего 0,13 м 2 ·К/Вт и не зависит от его толщины.

Расчёты

На данный момент разработана новая схема определения толщины зазора для монтирования качественного вентилируемого фасада. Для её вычисления используется основная характеристика теплозащиты ограждающей системы – это сопротивление теплопередачи, R1. Во время этапа проектирования величина является расчётной и вычисляется уравнением №10 из вышеупомянутого СНиП 11-3-79:

  • R1 = (T1 — T2) / q Вентилируемый фасад с отделкой на относе имеет более сложный принцип передачи тепла, чем предусмотренный этой формулой. В данном случае есть уже два участка с отличающимися характеристиками теплопередачи, поэтому вычислять их необходимо по отдельности. Отталкиваясь от этого условия приходится установить двухкомпонентность переноса тепла из зазора через стандартное уравнение: R1 = (T1 — T2) / q = R(СНиП) + R(зазора) = R2 * r + R(зазора) Слагаемое номер один правой части формулы характеризует тепловую передачу сквозь фасад с теплоизоляцией. Второе – сквозь воздушный заслон и облицовочную поверхность. Если облицовка отсутствует, второе слагаемое удаляется и образуется обычная формула, присущая таким системам: R1 = R(СНиП) = R1(усп) * r = ((1 / а) + Z + (1 / а) * r В трёх формулах, приведённых выше использованы следующие обозначения
  • T1, T2 – температура воздуха на входе в систему и соответственно на выходе из неё, С
  • q – плотность проникания тепла через систему, Вт/кв.м;
  • R(СНиП) – конкретное сопротивление тепловой передаче системы с теплоизоляцией, которое определяется в соответствии с действующим СНиП 11-3-79, м2 * С/Вт;
  • r – коэффициенты теплотехнического состояния однородности системы;
  • R (зазора) – эффектное термическое сопротивление воздушного пространства, м2 * С/Вт.

Вычисление зазора

Необходимая толщина воздушной заслонки рассчитывается путём использования значений температуры и скорости движения воздуха в вентилируемом фасаде. Между поверхностью облицовки и утеплителя происходит лучевой теплообмен, который напрямую зависит от температуры.

  • Температура воздуха в зазоре;
  • Скорость его передвижения внутри системы;
  • Толщина зазора;
  • Коэффициент теплового обмена конструкции.

Результат

Исходя из всего вышеперечисленного можно сделать вывод: теплоизоляционные свойства вентилируемого фасада зависят не только от качества и количества теплоизоляционного материала. Большое влияние на это значение оказывает и правильно рассчитанный и смонтированный зазор, а также ещё один фактор: теплопроводность и количество утеплителя, облицовочного материала, а также кронштейнов.

Необходимо помнить, что для достижения оптимальных теплоизоляционных характеристик фасадов такого плана является наименьшее количество используемых кронштейнов. При этом величина свободного пространства должна быть как можно меньше (исходя из требований удаления влаги от утеплителя или другим соображениям).

Элементы вентилируемого фасада

Металлическая подконструкция (фахверк) состоит из кронштейнов, которые крепятся непосредственно к стене, и несущих профилей (направляющих), устанавливаемых на кронштейны, к которым при помощи специальных крепежных элементов прикрепляются плиты (листы) облицовки. Утеплитель фиксируется на наружной поверхности стены при помощи дюбелей, специальных профилей и т.п.
Основное предназначение подконструкции – надежно закрепить плиты облицовки и теплоизоляции к стене таким образом, чтобы между теплоизоляцией и облицовочной панелью осталась воздушная прослойка. При этом исключаются клеевые и другие “мокрые” процессы, а все соединения осуществляются механически. Подконструкция должна обладать:

  • высокой коррозионной устойчивостью;
  • несущей способностью и прочностью, способными противостоять статическим (собственный вес конструкции, включая вес панелей и утеплителя) и динамическим (пульсирующая составляющая ветровой нагрузки, температурные перепады и т.д.) нагрузкам;
  • возможностью нивелирования кривизны основания (несущих стен);
  • простотой и высокой скоростью монтажа и т.д.
  • Россия – ДИАТ, АЛКОН ТРЕЙД (U-kon), МОСМЕК завод металлоконструкций (КТС), ТЕХНОКОМ, ГРАНИТОГРЕС и др.;
  • Австрия – SLAVONIA (SPIDI), EUROFOX;
  • Германия – WAGNER-SYSTEM.

Системы всех перечисленных производителей могут с успехом применяться для вентилируемых фасадов. Они, с достаточной степенью вероятности, удовлетворяют требованиям к подконструкциям, сформулированным выше. При этом в каждой системе есть своя “изюминка” – особая конструкция того или иного элемента, которая позволяет особенно эффективно решать ту или иную задачу:

  • нивелировать неровности кривизны основания (несущих стен);
  • минимизировать “мостики холода”;
  • обеспечивать возможность крепления мелкоразмерной облицовки без существенного удорожания подконструкции;
  • обеспечивать надежное крепление теплоизоляционных плит.

Необходимо также остановиться еще на одном, весьма существенном, моменте. К сожалению, на сегодняшний день уровень качества строительства в России еще не достиг европейских стандартов, поэтому при сооружении вентилируемых фасадов в нашей стране приходится сталкиваться с проблемами, которые незнакомы западным производителям конструкций (например, значительные неровности несущих стен). Это приводит к тому, что импортные системы (даже очень высокого уровня) приходится приспосабливать к российским условиям.
Объективная оценка требований, которым должна удовлетворять подконструкция, позволяет понять, насколько сложной и ответственной частью фасада она является. Именно поэтому каждая система должна проходить очень серьезную проверку.
В процессе расчета подконструкции необходимо учитывать целый ряд данных, например:

  • климатический район застройки (по СНиП 2.01.07-85* Нагрузки и воздействия);
  • местонахождение (открытое пространство, плотная застройка и т.п.);
  • высота, конфигурация и тип здания;
  • вид материала несущей стены, толщина и тип утеплителя, тип облицовки и способ ее крепления (видимый, невидимый);
  • особенности среды (слабо-, средне- или сильноагрессивная) и т.п.

Следует особо подчеркнуть, что расчет конструкций вентилируемого фасада должны выполнять только специалисты. Анкерные крепления – одни из важнейших элементов конструкции, обеспечивающие механическое крепление кронштейнов подконструкции к стене. К ним предъявляются самые высокие требования: прочность заделки в стенах из различных материалов при действии продольных и поперечных (относительно оси анкера) сил, долговечность, сохранение физических свойств в условиях высоких или очень низких температур и т.д. Диаметры анкеров (дюбелей и шурупов), а также глубину их заделки выбирают исходя из усилий, действующих на кронштейн крепления конструкции к стене в зависимости от величины сил, направленных вдоль (усилие вырыва) и перпендикулярно (срезающее усилие) оси анкера и материала стены, в которую устанавливается данный тип анкера.
 

Схема вентилируемого фасада

Приведу общую схему вентилируемого фасада, рисунок 1 (на примере утепленного вентилируемого фасада с деревянной обрешеткой).

На рисунке фигурируют первая и вторая обрешетки. Это условное, принятое в этой статье название. Это название не зависит от материала обрешетки. Первая обрешетка, это та, что крепится к стене, вторая обрешетка – крепится к первой и на вторую обрешетку крепится облицовка. Первая обрешетка может еще называться “основной”.

Опишу, какие варианты рассмотрим и (кратко) когда применяется тот или иной вариант.

  • Устройство вентилируемого фасада с деревянной обрешеткой, для неутепленного фасада;
  • Устройство вентилируемого фасада с деревянной обрешеткой, для утепленного фасада с толщиной утеплителя 50 мм;
  • Устройство вентилируемого фасада с деревянной обрешеткой, для утепленного фасада с толщиной утеплителя 100 мм (несмотря на Примечание, ниже, ее редко, но выполняют).

Примечание по деревянной обрешетке

Деревянная обрешетка, преимущественно, применяется для деревянных обшивок, типа ОСБ, блокхаус, доска

Важно отметить такой момент. Несмотря на то, что в интернет – источниках вариант полностью деревянной обрешетки приводится очень часто, и устройство ее простое, важно понимать, что устройство полностью деревянной обрешетки целесообразно для вентилируемого фасада без утеплителя и (иногда) для вентилируемого фасада с утеплителем, если утеплителя не более 50 мм

Объясню, почему.

1. Если утеплителя нужно 100 мм, то основная (первая) обрешетка должна быть с сечением 100х50 мм. И потом еще и вторая обрешетка (для крепления мембраны и организации вентиляционного зазора), с сечением 30х40 мм. Это означает, что при шаге обрешетки 60 см, расход древесины на один этаж будет такой же, как для строительства каркасного дома той же площади.  А, как правило, хозяева рассчитывают на более экономичный вариант, применяют недорогую отделку, типа ПВХ сайдинга, а закупка древесины на обрешетку сведет всю экономию на нет.

2. Полностью сухое дерево берут редко (его тяжелее найти и оно дороже). Брус 100х50 мм, если его взять не полностью сухим, будет сильно вести. И при этом, этот брус достаточно мощный (по своему сечению), чтобы «покрутить» вместе с собой и саму облицовку (популярный для такой конструкции ПВХ сайдинг покрутит точно). Кроме деревянной обрешетки в статье будут рассмотрены:

  • Комбинированная (первая металлическая, вторая деревянная) обрешетка для неутепленного вентилируемого фасада и неровной несущей стены.
  • Комбинированная (первая металлическая, вторая деревянная) обрешетка для утепленного вентилируемого фасада и неровной несущей стены, при толщине утеплителя 50 мм.
  • Металлическая обрешетка. Для ровной и неровной стены, для неутепленного вентилируемого фасада.
  • Металлическая обрешетка для утепленного вентилируемого фасада, при толщине утеплителя 50 мм.
  • Комбинированная обрешетка из самодельного крепежного элемента и деревянного бруска для утепленного вентилируемого фасада при толщине утеплителя 100 мм.
  • Устройство металлической обрешетки для утепленного вентилируемого фасада, если утеплителя 100 мм.

По каждому из девяти вариантов обрешетки, перечисленных выше, будут рассмотрены такие моменты по устройству:

  • из чего выполнена первая и вторая обрешетки в каждом конкретном случае;
  • как первая обрешетка закрепляется к стене;
  • как вторая обрешетка закрепляется к первой;
  • как крепится утеплитель (если он есть);
  • как крепится супердиффузионная мембрана (если она есть);
  • за счет чего образуется вентиляционный зазор в каждом конкретном случае.

Примечание. В данной статье я сознательно не привожу  подробности крепежа облицовки к второй обрешетке. Дело в том, что крепеж сильно разнится в зависимости от материала облицовки. И по каждому виду (по ОСБ, сайдингу и тд) можно делать отдельную статью с подробностями монтажа.

Системы крепления вентилируемого фасада

Подробного рассмотрения требует выбор крепежа. Как известно, существует две системы крепления — скрытая и открытая.

Первый вариант — это металлические кляммеры, охватывающие плиту сверху и снизу. Второй — анкерные болты которые вставляются в просверленные в плите несквозные отверстия и там раскрываются подобно лепесткам цветка.

Скрытая система крепления

Открытая система крепления

Порой монтажные элементы не портят внешний вид облицовки, а напротив, добавляют ей выразительности.

Использование скрытой системы крепления оправданно далеко не всегда: например, на участках фасада, несущих высокую эстетическую нагрузку. И дело не только в том, что данный крепеж обходится вдвое дороже видимого. Если плитка, закрепленная таким образом, будет повреждена для ремонта придется разбирать весь вертикальный ряд. Заменить облицовочную единицу, установленную открыто, не в пример проще.

Кляммеры, окрашенные под цвет плитки, практически незаметны на фасаде

Некачественный крепеж приводит к выпадению облицовочных плиток. 

Как рассчитать размеры дверей углового шкафа

Главная сложность расчета дверей на угловой шкаф – это определение ширины створки. Для этого сначала вычисляется ширина проема. Тут придется вспомнить школьную математику и известную формулу – квадрат гипотенузы равен сумме квадратов длины катетов.

Возьмем для примера навесной угловой кухонный шкаф, стандартных размеров 600х600 и глубиной боковин 300 мм.

При толщине боковин 16 мм длина катетов будет составлять (600-300-16)=284 мм.

Вычисляем проем в два действия: 284х284х2=161312, без квадратного корня 401,63. Округляем до 401.

При расчете ширины фасада на угловой шкаф учитывают один нюанс: за счет мебельной петли дверца немного «выдвинется» вперед, не будет плотно примыкать к проему. То есть выйдет на большую диагональ и зазоры образуются сами собой. Поэтому вычитать от величины проема 3 мм, как на обычные шкафы, не стоит. В нашем случае можно округлить до 400 мм.

А вот высота вычисляется аналогично обычным шкафам. В нашем случае для кухонного модуля высотой 720 мм она будет составлять 717-716 мм (в зависимости от того, как рассчитывались остальные фасады кухни, с зазором 4 мм или 3 мм).

Если ширина проема больше 500 мм, то есть резон поставить не одну, а две створки. При расчете ширины необходимо учитывать зазор между фасадами, чтобы створки не мешали открываться друг другу. То есть при ширине проема 600 мм у углового шкафа, ширина каждой двери должна быть порядка 298 мм.

Вентилируемый фасад. Цена

Стоимость вентилируемого фасада зависит от  цены на утеплитель, ветрогидрозащитной пленки, отделочных материалов, стоимости профиля, кронштейнов и т. д. и конечно же от стоимости монтажа. Все эти цены додаются и умножаются на площадь фасада. Исходя из этого вентилируемые фасады делят на три вида:

Дорогой вентилируемый фасад

В этом случае используется профиль из нержавейки, а для облицовочных робот применяется алюмокомпозитные материалы. Срок службы таких фасадов не меньше 50 лет, но и цена не всем по карману.

Навесной фасад средней стоимости

Для облицовки используется преимущественно керамогранит. Эти фасады встречаются чаще, так как наличие огромного выбора текстур и цветовой гаммы керамогранитных плит позволяет воплощать в реальность любые дизайнерские замыслы. Фасады средней стоимости могут значительно отличатся , начиная от количества слоев утеплителя и заканчивая облицовочными материалами.

Экономный вентилируемый фасад

Для монтажа такого фасада используют недорогие утеплители и профиль из оцинкованной стали. Облицовку делают из плит из каменной крошки, пластиковых панелей или деревянных материалов. Чаще применяется такой вид отделки как сайдинг, это обосновывается  большим выбором цвета и фактуры.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий