Теплотехнический расчет наружной стены здания с вентилируемым фасадом

Влияние воздушной прослойки

В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае – это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).

Расчет расхода тепловой энергии на отопление и вентиляцию

Последний блок программы, как и предыдущий часть данных использует из первого расчета. При желании все параметры можно пересчитать под конкретный пример. Все пункты понятны и просты в заполнении.

Рабочее окно расчета:

Для расчетов необходимо, чтобы были заполнены следующие графы:

  • Удельная теплозащитная характеристика здания.
  • Удельная вентиляционная характеристика здания.
  • Удельная характеристика бытовых тепловыделений здания.
  • Удельная характеристика теплопоступлений в здание от солнечной радиации.
  • Коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций.
  • Коэффициент эффективности авторегулирования подачи теплоты в системах отопления.
  • Коэффициент, учитывающий снижения теплопотребления жилых зданий при наличии поквартирного учета тепловой энергии.
  • Коэффициент, учитывающий дополнительное теплопотребление системы отопления, связанное с дискретностью номинального теплового потока номенклатурного ряда отопительных приборов, их дополнительными теплопотерями через радиаторные участки ограждений, повышенной температурой воздуха в угловых помещениях, теплопотерями трубопроводов, проходящих через неотапливаемые помещения.
  • Средняя высота этажа здания.

Нормативные документы для выполнения расчета

Приведенное сопротивление и его соответствие нормируемому значению – главная цель расчета. Но для его выполнения потребуется узнать теплопроводности материалов стены, кровли или перекрытия. Теплопроводность – величина, характеризующая способность изделия проводить через себя тепло. Чем она ниже, тем лучше.

Во время проведения расчета теплотехники опираются на следующие документы:

  • СП 50.13330.2012 «Тепловая защита зданий». Документ переиздан на основе СНиП 23-02-2003. Основной норматив для расчета ;
  • СП 131.13330.2012 «Строительная климатология». Новое издание СНиП 23-01-99*. Данный документ позволяет определить климатические условия населенного пункта, в котором расположен объект ;
  • СП 23-101-2004 «Проектирование тепловой защиты зданий» более подробно, чем первый документ в списке, раскрывает тему ;
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года) «Здания жилые и общественные» ;
  • Пособие для студентов строительных ВУЗов Е.Г. Малявина «Теплопотери здания. Справочное пособие» .

* — дальше в тексте я буду ссылаться на нормативные документы и чтобы полностью не прописывать их название я укажу только номер, например .

Теплотехнический расчет не сложен. Его может выполнить человек без специального образования по шаблону. Главное очень внимательно подойти к вопросу.

Зачем выполняется расчет?

Перед началом строительства заказчик может выбрать, будет он учитывать теплотехнические характеристики или обеспечит только прочность и устойчивость конструкций.

Расходы на утепление совершенно точно увеличат смету на возведение здания, но снизят затраты на дальнейшую эксплуатацию. Индивидуальные дома строят на десятки лет, возможно, они будут служить и следующим поколениям. За это время затраты на эффективный утеплитель окупятся несколько раз.

Что получает владелец при правильном выполнении расчетов:

  • Экономия на отоплении помещений. Тепловые потери здания снижаются, соответственно, уменьшится количество секций радиатора при классической системе отопления и мощность системы теплых полов. В зависимости от способа нагрева, затраты владельца на электричество, газ или горячую воду становятся меньше;
  • Экономия на ремонте. При правильном утеплении в помещении создается комфортный микроклимат, на стенах не образуется конденсат, и не появляются опасные для человека микроорганизмы. Наличие на поверхности грибка или плесени требует проведения ремонта, причем простой косметический не принесет никаких результатов и проблема возникнет вновь;
  • Безопасность для жильцов. Здесь, также как и в предыдущем пункте, речь идет о сырости, плесени и грибке, которые могут вызывать различные болезни у постоянно пребывающих в помещении людей;
  • Бережное отношение к окружающей среде. На планете дефицит ресурсов, поэтому уменьшение потребления электроэнергии или голубого топлива благоприятно влияет на экологическую обстановку.

Теплотехнический расчет индивидуального жилого дома

Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.

Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.

Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.

Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.

Исходные данные:

  • Помещение с обмером по наружным габаритам 3000х3000;
  • Окно размерами 1200х1000.

Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м.2

Результат:

  • Qуд при т/изоляции 100 мм составляет 103 Вт/м2
  • Qуд при т/изоляции 150 мм составляет 81 Вт/м2
  • Qуд при т/изоляции 200 мм составляет 70 Вт/м2

Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.

Расчёт фасада

Расчет фасада и все рекомендации, цены, технические данные Вы получите от наших специалистов, они произведут для Вас расчёт всех необходимых материалов с учётом таблицы комплектации и прочих ключевых характеристик конструкции.

Перед отделкой фасада всегда необходимо

  • Рассчитать все облицовочные материалы
  • Сделать проект
  • Составить смету на фасадные работы

Чтобы проще было понять сколько стоит облицовка Вашего фасада, мы готовы сделать предварительный расчет без вложений для Вас.

Все очень просто :

  • Вы выбираете облицовочный материал и описываете свое здание, или предоставляете документы по площади и фасаду.
  • А мы на основании собственного опыта и экспертных знаний специалистов делаем Вам предварительный расчет фасадов, в котором вы увидите общую цену фасада и количество всех элементов на каждый м2.

Позвоните нам прямо сейчас по телефону +7(495)989-18-04 и мы БЕСПЛАТНО сделаем расчет Вашего фасада.

ВЫ ПОЛУЧИТЕ:

  • Полный расход элементов фасадной системы, крепежа и облицовочного материала (Оптимальный расход) — бесплатно.
  • Консультацию эксперта по облицовке именно Вашего фасада — бесплатно.
  • Инструкции по монтажу фасадов — .
  • Цену на фасадные материалы ниже рыночной на 15%.
  • Возможность купить качественные материалы с гарантией от производителя!

Расчет вентилируемого фасада, фасадных систем, материалов

Для облицовки фасада необходимо смонтировать обрешетку (фасадную систему) из:

  • оцинкованных профилей,
  • кронштейнов,
  • основных и промежуточных вертикальных направляющих,
  • горизонтальных направляющих
  • при помощи специального крепежа.

В зависимости от облицовочного материала, также используются различные декоративные планки, уголки, кляммеры, уплотнители и другие элементы.

Расчеты конструкций облицовки и систем фасада на м2, примеры

Представляем Вашему вниманию таблицы средних расходных показателей, чтобы примерно посчитать расход элементов и составить смету для Вашего фасада.

Как рассчитать фасадную систему?

В таблице расчетов указано среднее количество элементов на один м2 фасада . Более точный расчет Вашего фасада наши специалисты произведут по проекту, либо по чертежам фасада, с учетом необходимых облицовочных материалов . Цены и количество элементов рассчитываются для каждого объекта индивидуально.

Обращаем Ваше внимание, что есть несколько видов облицовки фасада, конструкции могут быть:

А материалы облицовки тоже могут быть различными:

Важные моменты при составлении расчета фасада:

  • При расчете фасадов обычно закладывают запас — около 10% для того чтобы хватило материала, так как при монтаже фасада, обрамлении окон, углов, входных групп и декоративных элементов всегда производится подрезка облицовочных материалов, что увеличивает расход. А также в некоторых местах стен фасада бывает увеличение расхода для обхода неровностей или требуется дополнительное укрепление конструкции.
  • При составлении среднего расчета всех элементовмы никогда не занижаем расход комплектующих, с целью удешевления. Мы ценим Ваше время и деньги , поэтому всегда считаем реальные показатели и количество фасадных элементов, наши клиенты всегда довольны и как правило, даже по среднему расчету материалов всегда хватает, с учетом наших рекомендаций.
  • В зависимости от выбранного материала средний расчет по фасаду сильно отличается и итоговая стоимость элементов тоже может меняться.

Расчёт фасада Расчет фасада, расчеты фасадных материалов для облицовки керамогранитом, фиброцементными плитами, металлокассетами, профлистом, примеры расчетов на м2

Потери через вентиляцию дома

Ключевым параметром в этом случае является кратность воздухообмена. При условии, что стены дома паропроницаемые, эта величина равна единице.


Проникновение холодного воздуха в дом осуществляется по приточной вентиляции. Вытяжная вентиляция способствует уходу теплого воздуха. Снижает потери через вентиляцию рекуператор-теплообменник. Он не допускает ухода тепла вместе с выходящим воздухом, а входящие потоки он нагревает

Есть формула, по которой определяют теплопотери через систему вентиляции:

Qв = (V х Кв : 3600) х Р х С х dT

Здесь символы обозначают следующее:

  1. Qв — теплопотери.
  2. V — объем комнаты в мᶾ.
  3. Р — плотность воздуха. еличина ее принимается равной 1,2047 кг/мᶾ.
  4. Кв — кратность воздухообмена.
  5. С — удельная теплоемкость. Она равна 1005 Дж/кг х С.

По итогам этого расчета можно определить мощность теплогенератора отопительной системы. В случае слишком высокого значения мощности выходом из ситуации может стать устройство вентиляции с рекуператором. Рассмотрим несколько примеров для домов из разных материалов.

Теплорасчет ограждающих конструкций по объему здания

Обычно такой способ используется для тех строений, где высокие потолки – более 3 метров. То есть промышленные объекты. Минусом такого способа является то, что не учитывается конверсия воздуха, то есть то, что вверху всегда теплее, чем внизу.

Формула:

Q=V*41 Вт (34 Вт)

  • V – наружный объем строения в м куб;
  • 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания. Если строительство ведется с применением современных строительных материалов, то показатель равен 34 Вт.

Для общей формулы мы советуем дополнительно использовать коэффициенты – это число, на которое нужно умножить результат:

  • Стекла в окнах:
    • двойной пакет – 1;
    • переплет – 1,25.
  • Материалы утеплителя:
    • новые современные разработки – 0,85;
    • стандартная кирпичная кладка в два слоя – 1;
    • малая толщина стен – 1,30.
  • Температура воздуха зимой:
    • -10 – 0,7;
    • -15 – 0,9;
    • -20 – 1,1;
    • -25 – 1,3.
  • Процент окон в сравнении с общей поверхностью:
    • 10% – 0,8;
    • 20% – 0,9;
    • 30% – 1;
    • 40% – 1,1;
    • 50% – 1,2.

Все эти погрешности могут и должны быть учтены, однако, редко используются в реальном строительстве.

Достоинства навесного фасада

По сравнению с другими способами отделки, вентилируемый фасад имеет ряд положительных отличий.

Тщательный расчет текущих затрат и будущих выгод, показывает, что все расходы, со временем, окупаются сторицей.

Выполняя проектирование конструкции, важно четко представлять себе, почему вместо традиционных материалов, предпочтительнее выполнить отделку из композитных. Они не выцветают под действием солнечных лучей и ветра. Технологическая карта определяет способ крепления облицовочных изделий, который обеспечивает целостность конструкции на долгие годы

Это нужно учитывать, осуществляя проектирование

Технологическая карта определяет способ крепления облицовочных изделий, который обеспечивает целостность конструкции на долгие годы. Это нужно учитывать, осуществляя проектирование

Они не выцветают под действием солнечных лучей и ветра. Технологическая карта определяет способ крепления облицовочных изделий, который обеспечивает целостность конструкции на долгие годы. Это нужно учитывать, осуществляя проектирование.

Видео инструкция по работе с калькулятором

Тепло в доме – важнейший элемент комфорта. Задача любого помещения создавать и поддерживать определенные температурные режимы. Понятно, что все эти технические условия должны закладываться и учитываться инженерами ещё на этапе проектирования сооружения. Однако, нередко мы имеем дело с уже построенным зданием – в этой ситуации наш калькулятор поможет провести расчет теплопотерь реально существующего дома или наружной стены квартиры  для проверки на соответствие нормам  и возможным последующем  утеплением.

Теплотехнический онлайн калькулятор – его задачи и возможности

Если говорить в целом, то наш онлайн калькулятор предназначен для реализации двух основных задач: расчет слоя утеплителя на стадии проекта, и проверка теплопотерь уже существующих ограждающих конструкции на их соответствие нормативным требованиям. Все остальные расчеты являются лишь уточнениями для решения двух вышеозначенных запросов.

Несомненно, важна финансовая составляющая – использование результатов калькуляции позволит Вам подобрать в необходимом количестве оптимальный материал для утепления постройки, т.е. не надо будет переплачивать, заказывая лишние объемы изоляции, иначе окупаемость их будет нецелесообразна. 

Теплотехнический расчет – методика и обоснование

Теплотехнический расчет ограждающих конструкций учитывает массив законодательной базы РФ, строительных норм и правил, государственных стандартов, которые вполне применимы и для других стран СНГ (как это было в СССР). Вам нужно лишь выбрать Ваш город

Далее для расчета Вам нужно ввести слои ограждающий конструкции с помощью кнопки “Добавить слой”. В появившимся окне выбираем нужные материалы в папках, или же можно найти их через поиск.

Тепловая защита здания, просчитанная с помощью нашего теплотехнического онлайн-калькулятора, имеет высокую степень достоверности.

Точка росы – это момент перехода влаги из газообразного состояния в жидкое. Почему необходимо учитывать этот параметр в теплотехнических расчетах ограждающих конструкций? Дело в том, что конденсат активно образуется именно в стенах, в тех плоскостях, где происходит соприкосновение холодного уличного воздуха с теплыми массами внутри помещения. Если влага начнет образовываться непосредственно на внутренних поверхностях, то очень скоро они потеряют свою целостность, эстетику а самое главное увеличится теплопроводность материалов.

Желательным (оптимальным) местом появления конденсата является наружная изоляция стен. С помощью нашей программы вы сможете рассчитать точку росы так, чтобы она выпадала конкретно на утеплителе.

Расчет тепловых потерь дома

Данный расчет позволит узнать теплопотери ограждающих конструкций за один час и за отопительный сезон с одного квадратного метра поверхности. Как и для всех остальных показателей – уточним базовые данные, которые требуются ввести при расчетах.

  • Географическое расположение квартиры, дома или перспективного строительного проекта – это необходимо для определения климатической зоны и связанных с ней характеристик (температурный режим, влажность и т.д.).  Вам нужно выбрать Ваш город из огромного списка стран СНГ.
  • Строительно-эксплуатационные параметры помещений и их предназначение – это важнейшие данные, помогающие максимально точно провести расчет толщины утеплителя для стен именно для данного типа помещения.
  • Указать слои конструкции – кирпич, пеноблок, наружная и внутренняя штукатурка, утеплитель и т.д. Калькулятор предлагает удобную опцию –возможность менять, добавлять или удалять слой, а также проводить расчеты по каждому из вариантов.  
  • Теплотехнический расчет онлайн имеет отличную визуализацию результатов. Для наглядности, часть информации представлена в виде графиков, таблиц, сносок.  Например, данный опцион позволяет варьировать температуру и влажность в разных помещениях в сторону повышения или понижения, что дает возможность провести сравнительный анализ и выбрать оптимальный расчет теплопотерь дома.

Стремитесь к 100% эфективности утепления и защиты от переувлажнения – это самые оптимальные цифры основанные на нормативных документах.

Пример теплотехнического расчета

Рассчитаем жилой дом, находящийся в 1 климатическом районе (Россия), подрайон 1В. Все данные взяты из таблицы 1 СНиП 23-01-99. Наиболее холодная температура, наблюдающаяся на протяжении пяти дней обеспеченностью 0,92 — tн = -22⁰С.

В соответствии со СНиП отопительный период (zоп) продолжается 148 суток. Усредненная температура на протяжении отопительного периода при среднесуточных температурных показателях воздуха на улице 8⁰ — tот = -2,3⁰. Температура снаружи в отопительный сезон — tht = -4,4⁰.


Теплопотери дома — важнейший момент на этапе его проектирования. От итогов расчета зависит и выбор стройматериалов, и утеплителя. Нулевых потерь не бывает, но стремиться нужно к тому, чтобы они были максимально целесообразными

В качестве наружного утеплителя, толщиной 5 см, использована минеральная вата. Значение Кт для нее — 0,04 Вт/м х С. Количество оконных проемов в доме — 15 шт. по 2,5 м² каждое.

Теплопотери через стены

Прежде всего, нужно определить термическое сопротивление как керамической стены, так и утеплителя. В первом случае R1 = 0,5 : 0,16 = 3,125 кв. м х С/Вт. Во втором — R2 = 0,05 : 0,04 = 1,25 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м х С/Вт.

Так как теплопотери имеют прямо пропорциональную взаимосвязь с площадью ограждающих конструкций, рассчитываем площадь стен:

А = 10 х 4 х 7 – 15 х 2,5 = 242,5 м²

Теперь можно определить потери тепла через стены:

Qс = (242,5 : 4.375) х (22 – (-22)) = 2438,9 Вт.

Теплопотери через горизонтальные ограждающие конструкции рассчитывают аналогично. В итоге все результаты суммируют.


Если есть подвал, то теплопотери через фундамент и пол будут меньшими, поскольку в расчете участвует температура грунта, а не наружного воздуха

Если подвал под полом первого этажа отапливается, пол можно не утеплять. Стены подвала все же лучше обшить утеплителем, чтобы тепло не уходило в грунт.

Определение потерь через вентиляцию

Чтобы упростить расчет, не учитывают толщину стен, а просто определяют объем воздуха внутри:

V = 10х10х7 = 700 мᶾ.

При кратности воздухообмена Кв = 2, потери тепла составят:

Qв = (700 х 2) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 20 776 Вт.

Если Кв = 1:

Qв = (700 х 1) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 10 358 Вт.

Эффективную вентиляцию жилых домов обеспечивают роторные и пластинчатые рекуператоры. КПД у первых выше, он достигает 90%.

Расчет вентилируемого фасада на прочность

1.Исходные данные

Объект расположен в городе Феодосия, в третьем ветровом районе.

Несущим основанием для фасада являются как торцы железобетонных перекрытий, толщиной 200 мм, так и кирпичная кладка из полнотелого кирпича толщиной 250 мм, расстояние между перекрытиями 3.3 м.

Пространство между перекрытиями заполнено кладкой из полнотелого кирпича.

Облицовочный материал – керамогранит 600х600х10 мм.

Высота облицовки составляет 78,4 м.

Для расчета выбран следующий участок фасада:

Рис. 1. Расчетный фрагмент фасада

2.Конструкция фасадной системы

Фасадная система крепежа имеет следующие особенности:

  • крепеж направляющего профиля на угловых участках фасада на высоте облицовки выше 40 м выполняется с шагом 0,6 м,
  • два верхних кронштейна является несущими и воспринимают нагрузку от веса облицовки, а также ветровую нагрузку,
  • остальные кронштейны воспринимают только ветровую нагрузку и служит для фиксации направляющего профиля в вертикальном положении, а также для компенсации температурных расширений.

Рис. 2. Сечение фасадной системы

3.Определение нагрузок

3.1 Ветровая нагрузка

В соответствии с ДБН В.1.2- 2 2006, Приложение Е нормативная ветровая нагрузка для г.Феодосия составляет:

Для здания, расположенного в 3 -м ветровом районе с типом местности В расчетная ветровая нагрузка на наветренную поверхность фасада на высоте 78.4 м для среднего участка фасада составляет 82.14кг/м 2 . При этом ветер прижимает облицовку к фасаду.

В нашем случаем наиболее невыгодное сочетание ветровой нагрузки и веса облицовки наблюдается в том случае, когда ветер «отрывает» облицовку. Это сочетание возникает на угловом участке фасада, при этом расчетная ветровая нагрузка на фасад составляет 149.5кг/м 2 .

Собираем ветровую нагрузку, которая передается на несущий профиль через кляммера как сосредоточенная сила

Рис. 3. Сбор ветровой нагрузки

3.2. Вес облицовки

Вес керамогранитной плитки 600х600х10 при плотности керамогранита 2.8 т/м 3 составляет:

Данные нагрузки в виде сосредоточенных сил приложены на расстоянии 36 мм от профиля – заменим их моментами силы – 0,37 кг х м.

4. Расчет несущего профиля

Рис. 4. Расчетная схема

Рис. 5. Эпюра прогибов

Рис. 6. Эпюра углов поворота

Рис. 7. Эпюра изгибающих моментов

Рис. 8. Эпюра поперечных сил

Результаты расчёта:

Элемент: Уголок 55х55х1.2

Масса 1 м.п. = 1.6950 кг

Момент инерции, Jx = 6.5670 см4

Момент сопротивления, Wx = 1.6210 cм3

Статический момент полусечения, Sx = 1.6400 cм3

Марка стали – C235

Расчётное сопротивление стали, Ry = 230 МПа

Относительный прогиб – 1/250 пролёта

Модуль упругости, E = 206000 МПа

Напряжения в балке, без учета собственного веса:

– нормальное (от Mmax): 6.1641 МПа

– касательное: (от Qmax) 25.2462 МПа

Максимальный прогиб (с к-том надёжности) равен 0.0071 м-3, что составляет 1/84118 от максимального пролёта 0.6 м.

Сечение элемента проходит по условиям прочности и жесткости.

5. Расчет кронштейна

Рис. 9. Схем сил действующих на кронштейн

толщина металла кронштейна t = 2 мм,

высота h = 55 мм,

Нагрузки, действующие на кронштейн:

ветровая нагрузка – 55.26 кг,

вес керамогранита – 30.3 кг,

собственный вес несущего профиля – 5.27 кг.

5.1 Проверка кронштейна на срез:

Расчетное сопротивление стали на срез:

Для марки стали С235 по ГОСТ 27772-88:

Условие прочности материала при кручении:

Условие выполняется.

5.2 Проверка кронштейна на изгиб:

Напряжение от изгиба:

Условие прочности материала при изгибе:

Условие выполняется.

6.Свойства дюбеля

По расчётам максимальное вырывающее усилие, действующее на кронштейн, составляет 55.26 кг (см. рис.4).

Согласно данным компании Hilti для анкера HRD-UGS 10×100 при базовом материале полнотелый керамический кирпич с прочностью 12 Н/мм 2 расчетная нагрузка на вырыв составляет 1.1кН = 112кг, при базовом материале бетон с прочностью 25 Н/мм 2 расчетная нагрузка на вырыв составляет 2.5 кН = 255 кг.

Так как 55.26

7040 просмотров

Расчет вентилируемого фасада на прочность Расчет фасада пример. Прочностной расчет навесного фасада.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий